Année scolaire 2024/2025 Durée: 04Heures

Epreuve Standardisée des Compositions du second Semestre : Mathématiques

EXERCICE 1: (Complexes)

(05pts)

Le plan complexe est muni d'un repère orthonormé $(0; \vec{l}, \vec{j})$. Unité graphique : 2cm

Soit le polynôme P défini par: $P(z) = z^3 - (7+i)z^2 + 2(8+3i)z - 10(1+i)$, Pour $z \in \mathbb{C}$.

- 1. Montrer que $z_0 = 1 + i$ est une solution de l'équation P(z) = 0. [0,5pt]
- 2. Déterminer les réels a, b et c tels que $P(z) = (z z_0)(az^2 + bz + c)$; [0,75pt]
- 3. Résoudre dans \mathbb{C} l'équation P(z) = 0; [0,5pt]
- 4. On considère les points A, B et C du plan d'affixes respectives : 1 + i; 3 + i et 3 i.
 - a) Placer les points A, B et C dans le repère. [0,75pt]
 - b) Calculer et écrire sous forme exponentielle $: \frac{z_A z_B}{z_C z_B}$; [0,5pt]
 - c) En déduire la nature exacte du triangle ABC. [0,5pt]
- 5. Soit T la similitude directe du plan dans lui-même qui laisse invariant le A et qui transforme B en C.
 - a. Donner l'écriture complexe de T. [0,75pt]
 - b. En déduire les éléments caractéristiques de T.

[0,75pt]

EXERCICE 2: (Probabilité)

(04pts)

Partie A : Soit Ω l'univers fini des possibles d'une expérience aléatoire. Soient A et B deux évènements.

- 1) Exprimer $p(A \cap B)$ en fonction de p(A) et P(B/A). [0,5pt]
- 2) Démontrer que $P(B) = P(B/A) \times P(A) + P(B/\bar{A}) \times P(\bar{A})$. [0,5pt]

Partie B:

La probabilité que l'élève Abdoul arrive en retard à l'école le 1^{er} jour est $\frac{1}{5}$.

- S'il est en retard un jour donné, la probabilité qu'il soit en retard est le lendemain est $\frac{1}{20}$.
- S'il est à l'heure un jour donné, la probabilité qu'il soit en retard est le lendemain est $\frac{1}{5}$.

 On appelle R_n l'évènement « Abdoul est en retard le jour n" et p_n la probabilité de R_n .
 - 1) Déterminer $p(R_{n+1} \cap R_n)$ et $p(R_{n+1} \cap \overline{R_n})$ en fonction de p_n . [0,75pt]
 - 2) En déduire que $p_{n+1} = -\frac{3}{20}p_n + \frac{1}{5}$. [0,5pt]
 - 3) On pose $\forall n \in \mathbb{N}^*$, $v_n = p_n \frac{4}{23}$. [0,5pt]
 - a) Montrer que (v_n) est une suite géométrique de raison $-\frac{3}{20}$. [0,5pt]
 - b) Exprimer v_n puis p_n en fonction de n. [0,5pt]
 - c) Calculer $\lim_{n \to +\infty} p(\overline{R_n})$. [0,25pt]

Année scolaire 2024/2025 Durée: 04Heures

Epreuve Standardisée des Compositions du second Semestre : Mathématiques

PROBLEME: (Etude de fonction) (11pts) Partie A: Soit la fonction f définie par : $f(x) = \begin{cases} x + 2 + \ln \left| \frac{x-1}{x+1} \right| & \text{si } x < 0 \\ (2+x)e^{-x} & \text{si } x \ge 0 \end{cases}$; 1. Montrer que f est définie sur $\mathbb{R} \setminus \{-1\}$. [0,5pt]2. a) Calculer les limites de f(x) aux bornes de son domaine de définition. [0,75pt]Préciser les asymptotes parallèles aux axes de coordonnées. [0,5pt]b) Calculer la limite de [f(x) - (x+2)] en $-\infty$. [0,5pt]Interpréter graphiquement le résultat. [0,5pt]3. a) Etudier la continuité de f en 0. [0,5pt]b) Démontrer que : $\lim_{x\to 0} \frac{e^{-x}-1}{x} = -1$ et que : $\lim_{x\to 0} \frac{\ln(1-x)}{x} = -1$; [01pt] c) En déduire que f est dérivable en 0^- et 0^+ . f est-elle dérivable en 0? [0,75pt]4. Calculer f'(x) pour : [0,5pt]a) $x \in [0; +\infty[$: b) $x \in]-\infty; -1[U]-1; 0[.$ et 5. Etudier le signe de f'(x) pour $x \in]0; +\infty[$ et pour $x \in]-\infty; -1[U]-1; 0[$. [0,5pt]6. Dresser le tableau de variation de f. [0,5pt]7. Montrer que l'équation f(x) = 0 admet une unique solution α appartenant à]-3;-2[. [0,5pt]8. Tracer (C_f) la courbe représentative de f ainsi que toutes ses asymptotes dans un repère orthonormé. [0,5pt]Partie B: Soit la fonction g restriction de la fonction f à l'intervalle : $]-\infty; -1[$. 1. Montrer que g réalise une bijection de $]-\infty$; -1[sur un intervalle J à préciser. [0,5pt]2. On note g⁻¹ sa bijection réciproque. a) Calculer g(-2). Montrer que g⁻¹ est dérivable en ln 3. [0,5pt]b) Calculer $(g^{-1})'(\ln 3)$. [0,5pt]c) Représenter la courbe de g-1 dans le repère précédent. [0,5pt]Soit H la fonction définie sur]0; + ∞ [par H(x) = $\frac{-x^2 + 2lnx + 1}{4x^2}$; a. Montrer que H est une primitive de la fonction $x \to -\frac{\ln(x)}{x^3}$ sur]0; $+\infty$ [. [0,5pt]b. Calculer l'aire A en cm² de la partie du plan comprise entre la courbe C_f , la droite

Fin du Sujet et Bonne Réflexion!

(D): y = x et les droites d'équations x=1 et x = e.

[01pt]